WhereScape is thrilled to invite you to...
Data Warehouse Architecture
A data warehouse architecture defines the overall architecture of data communication. From processing the data to presenting it for end-clients computing, each data warehouse is characterized by some vital components within the enterprise. Data warehouse applications are designed to support online analytical processing (OLAP) which includes applications such as profiling, summary reporting, forecasting, and analyzing the trends. Unlike production databases, data warehouses are updated periodically from the operational systems.
How do Data Warehouses Work?
A data warehouse is subject-oriented as it offers information regarding the subject instead of an organization’s ongoing operations. The OLTP (Online Transactional Processing) data, that executes transaction-focused tasks, is accumulated in the production database on a regular basis which is then extracted, filtered, and then loaded inside an exclusive warehouse server from which users can access the information they require. An advantage of a data warehouse is that the previous data is not erased when new data is entered into it. A data warehouse is time-variant as the data stored in it has a high shelf life.
Data Warehouse Architectures are complex since they contain historical and cumulative data from single or multiple sources. These sources can be Traditional Data Warehouse, Cloud Data Warehouse, or Virtual Data Warehouse.
Data Warehouse Layers
One-Tier Data Warehouse Architecture:
The objective behind this type of architecture is to minimize the amount of data stored as there is a single layer. This is done to avoid data redundancy. This type of architecture is not very commonly used.</span
Two-Tier Data Warehouse Architecture:
Two-layer architecture has two separate layers for the physically available sources and the data warehouse. Due to network limitations, this type of architecture has connectivity issues. This architecture isn’t expandable and hence does not support a lot of end-users.
Three-Tier Data Warehouse Architecture:
Consisting of a top, middle, and bottom tier, this kind of architecture is very popular and is most widely used.
- Bottom Tier: This usually comprises the relational database system. In this layer, data is sorted, cleaned, transformed, and loaded using the back-end tools.
- Middle Tier: This is the OLAP server. It is implemented using either ROLAP or MOLAP models. This layer acts as a mediator between the database and the end-user as it presents an abstract view of the database.
- Top-Tier: This is also called the front-end client layer. Here, you can find all the tools and APIs that you need to get the data out from the data warehouse. Tools such as Query and reporting tools, Application Development tools, Data mining tools, and OLAP tools can be found here.
Data Warehouse Components
- Separation: Analytical and transactional processing should be kept separate from each other.
- Scalability: Use simple Hardware and software architectures that can manage and process large data volumes to meet the user’s growing requirements.
- Extensibility: The architecture should be able to perform new operations and technologies without much hassle and effectively.
- Security: Monitoring accesses are critical since strategic data is stored in the data warehouse.
- Administrability: Data Warehouse management should be easy and uncomplicated.
Data Warehouse Best Practices
- Create a data model: Identify your organization’s business logic and understand what type of data is vital to the organization before charting a strategy on whether this data will flow through the data warehouse in a dimensional, denormalized, or hybrid mode.
- Opt for a reputed data warehouse architecture standard: Make sure that your data model has a framework and a set of best practices to follow. Popular architecture standards include 3NF, Data Vault modeling, and star schema.
- Create a data flow diagram: It’s time to document how you want the data to flow through the data warehouse to meet your business requirements.
- Create a single repository: When dealing with such large amounts of data, it becomes important to have a single source of truth where all your data is consolidated.
- Utilize automation: Automation tools help in sorting vast amounts of data efficiently. This will ensure that your data is processed quickly and accurately.
- Permit metadata sharing: Choose the appropriate design approach as a top-down and bottom-up approach in Data Warehouse which can facilitate metadata sharing between data warehouse components easily.
- Enforce coding standards: Enforcing coding standards ensures the system’s efficiency. Carefully design the data acquisition and cleansing process for the Data warehouse.
WhereScape Data Automation
WhereScape eliminates the risks in data projects and accelerates time to production to help organizations adapt better to changing business needs. Book a demo to see what you can achieve with WhereScape.
What Makes A Really Great Data Model: Essential Criteria And Best Practices
By 2025, over 75% of data models will integrate AI—transforming the way businesses operate. But here's the catch: only those with robust, well-designed data models will reap the benefits. Is your data model ready for the AI revolution?Understanding what makes a great...
Guide to Data Quality: Ensuring Accuracy and Consistency in Your Organization
Why Data Quality Matters Data is only as useful as it is accurate and complete. No matter how many analysis models and data review routines you put into place, your organization can’t truly make data-driven decisions without accurate, relevant, complete, and...
Common Data Quality Challenges and How to Overcome Them
The Importance of Maintaining Data Quality Improving data quality is a top priority for many forward-thinking organizations, and for good reason. Any company making decisions based on data should also invest time and resources into ensuring high data quality. Data...
What is a Cloud Data Warehouse?
As organizations increasingly turn to data-driven decision-making, the demand for cloud data warehouses continues to rise. The cloud data warehouse market is projected to grow significantly, reaching $10.42 billion by 2026 with a compound annual growth rate (CAGR) of...
Developers’ Best Friend: WhereScape Saves Countless Hours
Development teams often struggle with an imbalance between building new features and maintaining existing code. According to studies, up to 75% of a developer's time is spent debugging and fixing code, much of it due to manual processes. This results in 620 million...
Mastering Data Vault Modeling: Architecture, Best Practices, and Essential Tools
What is Data Vault Modeling? To effectively manage large-scale and complex data environments, many data teams turn to Data Vault modeling. This technique provides a highly scalable and flexible architecture that can easily adapt to the growing and changing needs of an...
Scaling Data Warehouses in Education: Strategies for Managing Growing Data Demand
Approximately 74% of educational leaders report that data-driven decision-making enhances institutional performance and helps achieve academic goals. [1] Pinpointing effective data management strategies in education can make a profound impact on learning...
Future-Proofing Manufacturing IT with WhereScape: Driving Efficiency and Innovation
Manufacturing IT strives to conserve resources and add efficiency through the strategic use of data and technology solutions. Toward that end, manufacturing IT teams can drive efficiency and innovation by selecting top tools for data-driven manufacturing and...
The Competitive Advantages of WhereScape
After nearly a quarter-century in the data automation field, WhereScape has established itself as a leader by offering unparalleled capabilities that surpass its competitors. Today we’ll dive into the advantages of WhereScape and highlight why it is the premier data...
Data Management In Healthcare: Streamlining Operations for Improved Care
Appropriate and efficient data management in healthcare plays a large role in staff bandwidth, patient experience, and health outcomes. Healthcare teams require access to patient records and treatment history in order to properly perform their jobs. Operationally,...
Related Content
What Makes A Really Great Data Model: Essential Criteria And Best Practices
By 2025, over 75% of data models will integrate AI—transforming the way businesses operate. But here's the catch: only those with robust, well-designed data models will reap the benefits. Is your data model ready for the AI revolution?Understanding what makes a great...
Guide to Data Quality: Ensuring Accuracy and Consistency in Your Organization
Why Data Quality Matters Data is only as useful as it is accurate and complete. No matter how many analysis models and data review routines you put into place, your organization can’t truly make data-driven decisions without accurate, relevant, complete, and...
Common Data Quality Challenges and How to Overcome Them
The Importance of Maintaining Data Quality Improving data quality is a top priority for many forward-thinking organizations, and for good reason. Any company making decisions based on data should also invest time and resources into ensuring high data quality. Data...
What is a Cloud Data Warehouse?
A cloud data warehouse is an advanced database service managed and hosted over the internet.