WhereScape is thrilled to invite you to...
The data warehouse – how the ‘what’ has replaced the ‘why’ for IT leaders
Chatting to prospective customers at a recent event, it struck me that, for buyers and sellers of data warehouse solutions, the conversation between the two has shifted irrevocably over the last few years.
With an increasingly buyer-driven purchase process, it’s no longer necessary to discuss with a prospective customer ‘why’ a data warehouse is necessary. Instead, our challenge is to reassure buyers that the ‘what’ of the purchasing decision made today will still be the right one for tomorrow. And automation is the key to that puzzle.
As firms recognise that putting data at the heart of their business can derive competitive advantage, many have begun the process of a digital transformation, and this has led buyers to look at their existing data infrastructure. Most come to the conclusion that their data platforms need modernising but are often fearful of making the wrong decision as to what platform to purchase. With ‘time to value’ of technology investments never more under scrutiny, the risk of being locked into technology that won’t deliver the required gains is one that concerns many of the IT leaders I talk with about data warehousing. They want to know ‘what’ they are going to be getting for their investment and want to understand how they can be assured that it will drive continual value for their organisations.
Now, while I am confident in my own professional abilities, I can never claim to be a fortune teller. However, when looking forward and analysing the right strategy for choosing a new data warehouse platform, I believe I have developed a sensible approach. This process has been tested by the numerous customer engagements I’ve witnessed over the years and is one I’m confident in sharing to alleviate the fear of making the wrong decision.
The strategy is not to be bound too tightly to one platform, but instead to craft a data infrastructure strategy that supports the flexibility needed ahead as your organization, and technology, changes and evolves. A future-proofed approach. Automation of the data warehouse is key to the execution of that strategy – and provides the assurance to buyers that the decision they are making today will also support them well for the future.
You see, whether organizations continue to rely on on-premises data warehouse platforms, migrate to the cloud or will manage hybrid environments of both for the long-run, teams can use automation to provide more to the business faster, with less cost and risk. Customers using automation rather than traditional approaches to design, develop, deploy and operate data infrastructure routinely deliver projects up to 80% faster. Additionally, for organizations ready to move past traditional waterfall development, automation offers the agility to work collaboratively and make adjustments sooner as business users see early iterations of their requests.
Automation also provides the flexibility for teams to pursue the architecture best suited for their organizational needs and fit – data warehouses, data vaults, data marts and data lakes. And makes it easier for them to introduce new data sources and data types into their infrastructure as they emerge, such as streaming data. Metadata-based automation solutions, like WhereScape® automation software, provide IT leaders the flexibility needed to ensure their investment today will support organizational needs well into the future. By leveraging metadata and automation, organizations can not only quickly adopt new technologies, they can also much more easily migrate, regenerate and optimize existing data warehouses on new data platforms as needed down the line.
Peace of mind, we all seek it. My role in conversations these days is to assure buyers that not only can we automate the ‘what’ they decide to purchase to help them reap its benefits faster, but automation will also serve as a safety net if future needs dictate a change. The ‘why’ is data warehousing beneficial conversation is well behind us. The future looks bright.
What Makes A Really Great Data Model: Essential Criteria And Best Practices
By 2025, over 75% of data models will integrate AI—transforming the way businesses operate. But here's the catch: only those with robust, well-designed data models will reap the benefits. Is your data model ready for the AI revolution?Understanding what makes a great...
Guide to Data Quality: Ensuring Accuracy and Consistency in Your Organization
Why Data Quality Matters Data is only as useful as it is accurate and complete. No matter how many analysis models and data review routines you put into place, your organization can’t truly make data-driven decisions without accurate, relevant, complete, and...
Common Data Quality Challenges and How to Overcome Them
The Importance of Maintaining Data Quality Improving data quality is a top priority for many forward-thinking organizations, and for good reason. Any company making decisions based on data should also invest time and resources into ensuring high data quality. Data...
What is a Cloud Data Warehouse?
As organizations increasingly turn to data-driven decision-making, the demand for cloud data warehouses continues to rise. The cloud data warehouse market is projected to grow significantly, reaching $10.42 billion by 2026 with a compound annual growth rate (CAGR) of...
Developers’ Best Friend: WhereScape Saves Countless Hours
Development teams often struggle with an imbalance between building new features and maintaining existing code. According to studies, up to 75% of a developer's time is spent debugging and fixing code, much of it due to manual processes. This results in 620 million...
Mastering Data Vault Modeling: Architecture, Best Practices, and Essential Tools
What is Data Vault Modeling? To effectively manage large-scale and complex data environments, many data teams turn to Data Vault modeling. This technique provides a highly scalable and flexible architecture that can easily adapt to the growing and changing needs of an...
Scaling Data Warehouses in Education: Strategies for Managing Growing Data Demand
Approximately 74% of educational leaders report that data-driven decision-making enhances institutional performance and helps achieve academic goals. [1] Pinpointing effective data management strategies in education can make a profound impact on learning...
Future-Proofing Manufacturing IT with WhereScape: Driving Efficiency and Innovation
Manufacturing IT strives to conserve resources and add efficiency through the strategic use of data and technology solutions. Toward that end, manufacturing IT teams can drive efficiency and innovation by selecting top tools for data-driven manufacturing and...
The Competitive Advantages of WhereScape
After nearly a quarter-century in the data automation field, WhereScape has established itself as a leader by offering unparalleled capabilities that surpass its competitors. Today we’ll dive into the advantages of WhereScape and highlight why it is the premier data...
Data Management In Healthcare: Streamlining Operations for Improved Care
Appropriate and efficient data management in healthcare plays a large role in staff bandwidth, patient experience, and health outcomes. Healthcare teams require access to patient records and treatment history in order to properly perform their jobs. Operationally,...
Related Content
What Makes A Really Great Data Model: Essential Criteria And Best Practices
By 2025, over 75% of data models will integrate AI—transforming the way businesses operate. But here's the catch: only those with robust, well-designed data models will reap the benefits. Is your data model ready for the AI revolution?Understanding what makes a great...
Guide to Data Quality: Ensuring Accuracy and Consistency in Your Organization
Why Data Quality Matters Data is only as useful as it is accurate and complete. No matter how many analysis models and data review routines you put into place, your organization can’t truly make data-driven decisions without accurate, relevant, complete, and...
Common Data Quality Challenges and How to Overcome Them
The Importance of Maintaining Data Quality Improving data quality is a top priority for many forward-thinking organizations, and for good reason. Any company making decisions based on data should also invest time and resources into ensuring high data quality. Data...
What is a Cloud Data Warehouse?
A cloud data warehouse is an advanced database service managed and hosted over the internet.