Join WhereScape at Big Data & AI World—the...
BI Built to Order, On-Demand: Automating Data Warehouse Delivery
This week, Dr. Barry Devlin published a provocative new paper on data warehouse automation – “BI Built to Order, On-Demand: Automating Data Warehouse Delivery.”
You can grab it here, if you’re curious. And you should be. Because in the paper Devlin does two things: first, he considers a few Inconvenient Truths about how data warehouses are built and managed – or misbuilt and mismanaged – and, second, he makes the case for data warehouse automation as a common-sense fix for today’s often mismanaged data warehouse development.
When Devlin described his vision for the business information system he called a “data warehouse” – back in early 1988 – we just didn’t have the tools to efficiently design, build, and manage warehouse systems. Everything, or almost everything, had to be done by hand: there weren’t any ETL tools, data integration suites, studios, platforms or workbenches. But even once we got primitive versions of these tools – starting in 1993 or thereabouts – things didn’t magically get better. In fact, by 2003, we were already starting to come to grips with the empirical fact that data warehouse projects took too long to build, failed to deliver on many of the promises Devlin had outlined in his paper, and, most important, were too hard to change. We know: WhereScape-the-company grew out of the integration experiences of our founders, who specialized in fixing just these problems.
But a great point that Devlin makes is that most of these problems were byproducts of what might be called an “out of phase” development process. Simply put: building data warehouse systems was and to some degree still is a disintegrated affair. In larger organizations, it is performed by separate teams or groups of developers, each working with their own set of tools, each using their own methodology, and each building at their own pace. According to Devlin, this is one of the biggest impediments to traditional analytic development.
“Modeling, database design and development of population routines required multiple, disconnected iterations involving business users, modelers, database administrators and ETL programmers at different times, each using different and unconnected tools. These gaps and tool transitions slowed the process and gave rise to design errors and inconsistencies,” Devlin writes.
The upshot is that this model compromises both the consistency of data and the timeliness of application delivery. Devlin sees data warehouse automation software – which centralizes data warehouse and analytical development in a single tool – promoting an iterative, agile development methodology, and implements a shared metadata repository – as a prescriptive Rx for this problem.
“The common environment and shared metadata repository offered by data warehouse automation overcomes this … by integrating the design and delivery of the data model, database structure, and the population process in one place – whether for a warehouse or mart,” he writes. “All the design and population metadata is stored together in a single repository, allowing development to flow smoothly and iteratively from user requirements, through database design, to creation of population routines. By integrating all the steps of the design and development process, consistent and quality data can be delivered quickly to the business for immediate review and early acceptance.”
Data warehouse automation software isn’t a turnkey fix. Devlin recognizes this. All the same, it’s a way to eliminate out-of-phase development, centralize the development process, and enforce a consistent, delivery-focused development paradigm. It gives you a solid foundation on which to build your data warehouse. Data warehouse automation software has other benefits that aren’t at all confined strictly to development. As Devlin notes, it promotes collaboration between business and IT, making it possible to produce data-driven – or business-data-driven – apps.
I’ll say more about this in a follow up post.
Simplify Cloud Migrations: Webinar Highlights from Mike Ferguson
Migrating your data warehouse to the cloud might feel like navigating uncharted territory, but it doesn’t have to be. In a recent webinar that we recently hosted, Mike Ferguson, CEO of Intelligent Business Strategies, shared actionable insights drawn from his 40+...
2025 Data Automation Trends: Shaping the Future of Speed, Scalability, and Strategy
As we step into 2025, data automation isn’t just advancing—it’s upending conventions and resetting standards. Leading companies now treat data as a powerful collaborator, fueling key business decisions and strategic foresight. At WhereScape, we’re tuned into the next...
Building Smarter with a Metadata-Driven Approach
Think of building a data management system as constructing a smart city. In this analogy, the data is like the various buildings, roads, and infrastructure that make up the city. Each structure has a specific purpose and function, just as each data point has a...
Your Guide to Online Analytical Processing (OLAP) for Business Intelligence
Streamline your data analysis process with OLAP for better business intelligence. Explore the advantages of Online Analytical Processing (OLAP) now! Do you find it hard to analyze large amounts of data quickly? Online Analytical Processing (OLAP) is designed to answer...
Mastering Data Warehouse Design, Optimization, And Lifecycle
Building a data warehouse can be tough for many businesses. A data warehouse centralizes data from many sources. This article will teach you how to master data warehouse design, optimization, and lifecycle. Start improving your data strategy today. Key Takeaways Use...
Revisiting Gartner’s First Look at Data Warehouse Automation
At WhereScape, we are delighted to revisit Gartner’s influential technical paper, Assessing the Capabilities of Data Warehouse Automation (DWA), published on February 8, 2021, by analyst Ramke Ramakrishnan. This paper marked a significant milestone for the data...
Unveiling WhereScape 3D 9.0.5: Enhanced Flexibility and Compatibility
The latest release of WhereScape 3D is here, and version 9.0.5 brings a host of updates designed to make your data management work faster and smoother. Let’s dive into the new features... Online Documentation for Enhanced Accessibility With the user guide now hosted...
What Makes A Really Great Data Model: Essential Criteria And Best Practices
By 2025, over 75% of data models will integrate AI—transforming the way businesses operate. But here's the catch: only those with robust, well-designed data models will reap the benefits. Is your data model ready for the AI revolution?Understanding what makes a great...
Guide to Data Quality: Ensuring Accuracy and Consistency in Your Organization
Why Data Quality Matters Data is only as useful as it is accurate and complete. No matter how many analysis models and data review routines you put into place, your organization can’t truly make data-driven decisions without accurate, relevant, complete, and...
Common Data Quality Challenges and How to Overcome Them
The Importance of Maintaining Data Quality Improving data quality is a top priority for many forward-thinking organizations, and for good reason. Any company making decisions based on data should also invest time and resources into ensuring high data quality. Data...
Related Content
Simplify Cloud Migrations: Webinar Highlights from Mike Ferguson
Migrating your data warehouse to the cloud might feel like navigating uncharted territory, but it doesn’t have to be. In a recent webinar that we recently hosted, Mike Ferguson, CEO of Intelligent Business Strategies, shared actionable insights drawn from his 40+...
2025 Data Automation Trends: Shaping the Future of Speed, Scalability, and Strategy
As we step into 2025, data automation isn’t just advancing—it’s upending conventions and resetting standards. Leading companies now treat data as a powerful collaborator, fueling key business decisions and strategic foresight. At WhereScape, we’re tuned into the next...
Building Smarter with a Metadata-Driven Approach
Think of building a data management system as constructing a smart city. In this analogy, the data is like the various buildings, roads, and infrastructure that make up the city. Each structure has a specific purpose and function, just as each data point has a...
Your Guide to Online Analytical Processing (OLAP) for Business Intelligence
Streamline your data analysis process with OLAP for better business intelligence. Explore the advantages of Online Analytical Processing (OLAP) now! Do you find it hard to analyze large amounts of data quickly? Online Analytical Processing (OLAP) is designed to answer...