Big Data is All the Rage, But Dimensional Data Warehouses Get the Job Done

By WSQ
| August 13, 2015

“Big data” is pervasive in the headlines nowadays. The entire world is enthralled by the implications of this enormous, constant flow of variably-structured information as well as the great and terrible things that can be and are being done with its power. There are mountains of data in every industry, from manufacturing to finance, retail to security, and the possibilities for what we can do with this information are endless. Big data may be all the buzz, but we must not let this excitement distract us from the reason we want data in the first place: to make better decisions.

Dimensional modeling — the process of organizing an enterprise’s information into facts (the things that we measure) and dimensions (the things that describe the measurements) — isn’t new anymore and it isn’t generating big headlines. Great visionaries of data management laid out the approach two decades ago and although it has been refined and expanded in the time since, the basic idea has remained the same. Yet this fairly simple approach to building data marts and data warehouses has continuously proven its incredible value over time.

The concept of a dimensional model is beautiful in its simplicity: organize the data the way the business people imagine it. When a business decision maker asks a question of her data, she usually says, “I want to see such-and-such a measurement by dimension x, dimension y, and dimension z.” For example, “I want to see the average sales transaction amount by customer demographic group, by store, and by month.” When we build the database along these lines we make it easy for the user to understand and quick for the database engine to answer the question.

There are still major investments being made in dimensional data marts and data warehouses. They haven’t lost their relevance and popularity but rather their mindshare. Big data is the sexy new concept and everyone is pushing their money that way, but sometimes your best investment isn’t in the next big thing, it’s in the proven thing. While companies and executives are focusing on big data, they’re often underinvesting in dimensional data warehouses.

Read full article here

ETL vs ELT: What are the Differences?

In working with hundreds of data teams through WhereScape’s automation platform, we’ve seen this debate evolve as businesses modernize their infrastructure. Each method, ETL vs ELT, offers a unique pathway for transferring raw data into a warehouse, where it can be...

Dimensional Modeling for Machine Learning

Kimball’s dimensional modeling continues to play a critical role in machine learning and data science outcomes, as outlined in the Kimball Group’s 10 Essential Rules of Dimensional Modeling, a framework still widely applied in modern data workflows.  In a recent...

Automating Data Vault in Databricks | WhereScape Recap

Automating Data Vault in Databricks can reduce time-to-value by up to 70%—and that’s why we hosted a recent WhereScape webinar to show exactly how. At WhereScape, modern data teams shouldn't have to choose between agility and governance. That's why we hosted a live...

WhereScape Recap: Highlights From Big Data & AI World London 2025

Big Data & AI World London 2025 brought together thousands of data and AI professionals at ExCeL London—and WhereScape was right in the middle of the action. With automation taking center stage across the industry, it was no surprise that our booth and sessions...

Why WhereScape is the Leading Solution for Healthcare Data Automation

Optimizing Healthcare Data Management with Automation Healthcare organizations manage vast amounts of medical data across EHR systems, billing platforms, clinical research, and operational analytics. However, healthcare data integration remains a challenge due to...

What is Data Fabric? A Smarter Way for Data Management

As of 2023, the global data fabric market was valued at $2.29 billion and is projected to grow to $12.91 billion by 2032, reflecting the critical role and rapid adoption of data fabric solutions in modern data management.  The integration of data fabric solutions...

Want Better AI Data Management? Data Automation is the Answer

Understanding the AI Landscape Imagine losing 6% of your annual revenue—simply due to poor data quality. A recent survey found that underperforming AI models, built using low-quality or inaccurate data, cost companies an average of $406 million annually. Artificial...

RED 10: The ‘Git Friendly’ Revolution for CI/CD in Data Warehousing

For years, WhereScape RED has been the engine that powers rapidly built and high performance data warehouses. And while RED 10 has quietly empowered organizations since its launch in 2023, our latest 10.4 release is a game changer. We have dubbed this landmark update...

Related Content

ETL vs ELT: What are the Differences?

ETL vs ELT: What are the Differences?

In working with hundreds of data teams through WhereScape’s automation platform, we’ve seen this debate evolve as businesses modernize their infrastructure. Each method, ETL vs ELT, offers a unique pathway for transferring raw data into a warehouse, where it can be...

Dimensional Modeling for Machine Learning

Dimensional Modeling for Machine Learning

Kimball’s dimensional modeling continues to play a critical role in machine learning and data science outcomes, as outlined in the Kimball Group’s 10 Essential Rules of Dimensional Modeling, a framework still widely applied in modern data workflows.  In a recent...

Automating Data Vault in Databricks | WhereScape Recap

Automating Data Vault in Databricks | WhereScape Recap

Automating Data Vault in Databricks can reduce time-to-value by up to 70%—and that’s why we hosted a recent WhereScape webinar to show exactly how. At WhereScape, modern data teams shouldn't have to choose between agility and governance. That's why we hosted a live...

ETL vs ELT: What are the Differences?

ETL vs ELT: What are the Differences?

In working with hundreds of data teams through WhereScape’s automation platform, we’ve seen this debate evolve as businesses modernize their infrastructure. Each method, ETL vs ELT, offers a unique pathway for transferring raw data into a warehouse, where it can be...

Dimensional Modeling for Machine Learning

Dimensional Modeling for Machine Learning

Kimball’s dimensional modeling continues to play a critical role in machine learning and data science outcomes, as outlined in the Kimball Group’s 10 Essential Rules of Dimensional Modeling, a framework still widely applied in modern data workflows.  In a recent...

Automating Data Vault in Databricks | WhereScape Recap

Automating Data Vault in Databricks | WhereScape Recap

Automating Data Vault in Databricks can reduce time-to-value by up to 70%—and that’s why we hosted a recent WhereScape webinar to show exactly how. At WhereScape, modern data teams shouldn't have to choose between agility and governance. That's why we hosted a live...

WhereScape Recap: Highlights From Big Data & AI World London 2025

WhereScape Recap: Highlights From Big Data & AI World London 2025

Big Data & AI World London 2025 brought together thousands of data and AI professionals at ExCeL London—and WhereScape was right in the middle of the action. With automation taking center stage across the industry, it was no surprise that our booth and sessions...